A Five-Year Stability Study of Controlled-Release Diltiazem Hydrochloride Tablets Based on Poly(Ethylene Oxide)

نویسندگان

  • Laila H. Emara
  • Ahmed A. El-Ashmawy
  • Nesrin F. Taha
چکیده

Article history: Received on: 02/03/2015 Revised on: 12/04/2015 Accepted on: 03/05/2015 Available online: 27/07/2015 The aim of this study is to investigative the stability of poly(ethylene oxide) (PEO) matrix tablets containing diltiazem hydrochloride (DTZ) after five-year storage at room temperature. DTZ matrix tablets containing different molecular weights (MW) of PEO and electrolytes (sodium carbonate anhydrous Na2CO3, potassium chloride KCl and pentasodium tripolyphosphate anhydrous PSTPP) were prepared. The fresh and stored tablets were evaluated by DTZ content, in vitro drug release rates and kinetics as well as DSC. All the PEO’s matrix tablets showed no significant changes in release rate, kinetics and drug content. The release rates of DTZ following five-year storage were slightly increased as the MW of PEO increased from 900,000 to 8,000,000. Also, it was clear that the addition of electrolyte drastically slowed the release rates of DTZ from fresh and stored tablets. DSC thermograms and similarity factor (ƒ2) depicted good system stability for all stored tablets. This is the first five-year long-term stability study reported concerning DTZ/PEO matrix tablets with different MW, which proved its stability for several years. This study might throw light on the dramatic difference observed between this study and the reported data of accelerated stability testing under stress conditions found in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro Release Kinetics Study of Diltiazem Hydrochloride from Wax and Kollidon SR Based Matrix Tablets

Extended-release matrix tablets of diltiazem hydrochloride (DTZ) were prepared using waxy materials alone or in combination with Kollidon SR. Matrix waxy materials were carnauba wax (CW), bees wax (BW), cetyl alcohol (CA) and glyceryl monostearate (GMS). Dissolution studies were carried out by using a six stations USP XXII type 1 apparatus. The in vitro drug release study was done in 1000 ml ph...

متن کامل

In vitro Release Kinetics Study of Diltiazem Hydrochloride from Wax and Kollidon SR Based Matrix Tablets

Extended-release matrix tablets of diltiazem hydrochloride (DTZ) were prepared using waxy materials alone or in combination with Kollidon SR. Matrix waxy materials were carnauba wax (CW), bees wax (BW), cetyl alcohol (CA) and glyceryl monostearate (GMS). Dissolution studies were carried out by using a six stations USP XXII type 1 apparatus. The in vitro drug release study was done in 1000 ml ph...

متن کامل

The Release Behavior and Kinetic Evaluation of Diltiazem HCl from Various Hydrophilic and Plastic Based Matrices

In this study, the effects of various hydrophilic (HPMC and Carbopol 971) and plastic (Ethylcellulose and Eudragit RL100) polymers on the release profile of diltiazem HCl from matrix tablets were evaluated in-vitro. For this purpose, tablets containing 60 mg of diltiazem HCl along with various amounts of the aforementioned polymers were prepared using the wet granulation technique. Tablets prep...

متن کامل

The Release Behavior and Kinetic Evaluation of Diltiazem HCl from Various Hydrophilic and Plastic Based Matrices

In this study, the effects of various hydrophilic (HPMC and Carbopol 971) and plastic (Ethylcellulose and Eudragit RL100) polymers on the release profile of diltiazem HCl from matrix tablets were evaluated in-vitro. For this purpose, tablets containing 60 mg of diltiazem HCl along with various amounts of the aforementioned polymers were prepared using the wet granulation technique. Tablets prep...

متن کامل

Floating Matrix Tablets of Domperidone Formulation and Optimization Using Simplex Lattice Design

The purpose of this research was to prepare a floating matrix tablet containing domperidone as a model drug. Polyethylene oxide (PEO) and hydroxypropyl methylcellulose (HPMC) were evaluated for matrix-forming properties. A simplex lattice design was applied to systemically optimize the drug release profile. The amounts of PEO WSR 303, HPMC K15M and sodium bicarbonate were selected as independen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015